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Let L(D) be an elliptic linear partial differential operator with constant coef-
ficients and only highest order terms. For compact sets K/RN whose complements
are John domains we prove a quantitative Runge theorem: if a function f satisfies
L(D) f=0 on a fixed neighborhood of K, we estimate the sup-norm distance from
f to the polynomial solutions of degree at most n. The proof utilizes a two-constants
theorem for solutions to elliptic equations. We then deduce versions of Jackson and
Bernstein theorems for elliptic operators. � 1996 Academic Press, Inc.

1. Introduction and Statement of Results

In this paper we study quantitative approximation problems for solu-
tions of elliptic partial differential equations. Throughout the paper we let
L(D) be an elliptic linear partial differential operator of order m on RN,
with constant complex coefficients and only highest order terms. That is,
we consider an operator L(D)=� |:|=m a: D:, where L(x)#� |:|=m a: x: is
nonconstant polynomial with complex coefficients on RN which is never
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equal to zero on RN"[0]. We let Ln be the space of polynomials P of
degree at most n satisfying L(D) P#0. If f is a continuous function on a
compact set K/RN, we consider the distance

dn( f, K)=inf[& f &P&K : P # Ln],

where we use the notation &g&s=sups | g|.
Lax and Malgrange have given an extension of the classical Runge

approximation theorem to solutions of elliptic equations. Their result
shows that if the compact set K/RN has a connected complement, and f
is a solution of L(D) f=0 on an open neighborhood of K, then
limn � � dn( f, K)=0. Our first theorem gives a quantitative version of this
theorem, under certain regularity conditions, from which we will deduce
Bernstein and Jackson theorems for solutions of elliptic equations.

A domain 0/RN is called a John domain if K=RN"0 is a nonempty
compact set, and there is a positive constant J�1 with the following
property: for each point y # 0 there exists a locally rectifiable curve #(s) in
0 parameterized by arclength, with #(0)=y and #(�)=�, such that
dist(#(s), K)�Js for every s>0. We refer to J as a John constant for 0. If
a regular subdomain G of class C� in RN _ [�] contains the point �,
then G"[�] is a John domain; this can be proved by making use of [GR,
Chapter 2, Lemma 1.4 and the corollary of Lemma 1.7].

Theorem 1 (Quantitative Runge Theorem). Let K be a compact subset
of RN whose complement is a John domain. Then there are constants p>0,
b>1, q>0, and C>0, each depending only on K and L, with the following
property. If 0<$<1, and f is a solution of L(D) f=0 on K$ , then for any
nonnegative integer n�m&N,

dn( f, K)�
C

$ pbn$q sup
K$

| f |. (1)

Here and in the future we use the notation

X$=[x: dist(x, X)<$]

when X/RN and $>0. We next state our Jackson theorem in the case
when m�N or N is odd.

Theorem 2 (Elliptic Jackson Theorem). Suppose m�N or N is odd.
Let K be a compact subset of RN whose complement is a John domain. Then
there are positive constants C1 and C2 , depending only on K and L, with the
following property. If f is a nonconstant continuous function on RN with
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compact support which satisfies L(D) f=0 on the interior of K, then for any
positive integer n�m&N,

dn( f, K)�C1 \1+
& f &RN

|(1) + | \ 1
nC2+ , (2)

where |=|f is the modulus of continuity

|($)=sup [ | f (x)&f ( y)|: x # RN, y # RN, |x&y|<$].

We next state the Bernstein theorem for solutions of elliptic equations
which was proved in [BL].

Theorem 3 (Elliptic Bernstein Theorem [BL, Theorem 1.2]). Let K be
a nonempty compact subset of RN with connected complement. Let 0 be an
open neighborhood of K. Then there exists a constant \<1 such that for any
solution f of L(D) f=0 on 0 we have lim supn � � dn( f, K)1�n�\.

Theorem 3 is easily deduced from Theorem 1. To see this, we note that
the domain RN _ [�]"K may be written as the union of an increasing
sequence of regular subdomains of class C �. One of these subdomains
must contain the compact set RN _ [�]"0, and we let K$ be the comple-
ment of this subdomain. We may then find $>0 so that K$$ /0. Applying
Theorem 1 to K$, we obtain Theorem 3.

For the Cauchy�Riemann operator in C, many Jackson-type results can
be found in Dzyadyk [D], and Belyi [B] proved a precise Jackson
theorem when K is the closure of a domain bounded by a quasiconformal
curve. In the latter case the complement of K is a John domain; in fact,
Andrievskii [A2] has characterized John domains in the plane in terms of
a ``k-quasidisk condition,'' and he has proved a precise Jackson theorem for
harmonic functions in this two-dimensional setting. Andrievskii [A1] also
used the John condition in proving an earlier version of our Theorem 2 for
harmonic functions in RN.

A key ingredient in our proof of Theorem 1 is the following ``two-con-
stants'' theorem.

Theorem 4 (Two-Constants Theorem for Elliptic Operators). Let 0 be
a domain in RN. Let K be a compact subset of 0, and G a nonempty open
subset of 0. Then there exist constants Y�1 and { # (0, 1), depending only
on L, 0, K, and G, with the following property. If f is any solution of
L(D) f=0 in 0, then

sup
K

| f |�Y(sup
G

| f | ){ (sup
0

| f | )1&{. (3)
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We remark that the right side of (3) may be infinite, but cannot be of
the indeterminate form 0 } � because any solution of L(D) f=0 is real-
analytic. Theorem 4 remains valid for any elliptic partial differential
operator with real-analytic is coefficients, and for a more general class of
sets G/0 as described at the end of Section 2. In case L(D) is the Laplace
operator, Korevaar and Meyers [KM] have proved Theorem 4 with Y=1.
For a discussion of related results and further references see [Kor, Section
5.1]. Vogt [V] has proved general theorems of this type using abstract
functional analysis techniques.

In Section 2 we give some preliminary lemmas, including the ``geometric''
Lemma 1 which indicates the essential properties of John domains we will
need; and we give the proof of Theorem 4. We prove Theorem 1 in Sec-
tion 3, and in Section 4 we use Theorem 1 to prove Theorem 2. In the final
Section 5 we give an extension of Theorem 2 to the case where m>N and
N is even.

2. Preliminary Results and the Proof of Theorem 4

If a # RN and r>0, we use the notation Br(a)=[x # RN: |x&a|<r] and
Ar(a)=[x # RN: |x&a|>r], with the shortened forms Br=Br(0) and
Ar=Ar(0). We will also have occasion to write Ar, R=[x # RN: r<
|x|<R].

We turn next to a discussion of John domains.

Lemma 1. Let 0/RN be a John domain, with John constant J, and let
K=RN"0.

(a) Fix a radius R>1 such that K/BR , and let Q=1+J�8. If
y # 0 & BR and 0<$<1, then there is a sequence of points a0 , a1 , ..., aZ in
0 such that

(i) the integer Z satisfies QZ&1�32R�(J$);

(ii) | y&a0 |�$�8;

(iii) |aj&aj+1 |�J $Q j�64 for 0� j�Z&1;

(iv) dist(aj , K)�J $Q j�8 for 0� j�Z;

(v) BJ $Qj�16(aj)/B8R�J for 0� j�Z;

(vi) BJ $QZ�16(aZ)/AR .

(b) There is a constant c>0 depending only on K with the following
property. For any $>0 and any y # K3$ & 0$ , there exists a point y~ # 0 with

dist( y~ , K)�4$, (4)

| y&y~ |�c$. (5)
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If $>0 is fixed, we can arrange that the map y � y~ assumes only finitely
many values, and the inverse image of each value is a Borel set.

Proof. (a) Let # be the arc associated with the point y # 0 in the
definition of a John domain, and select the positive integer Z so that

logQ
32R
J$

�Z<\logQ
32R
J$ ++1.

Let aj=#($Q j�8) for j # [0, 1, ..., Z]. Then property (i) is clear, property
(ii) follows from writing

| y&a0 |=|#(0)&#($�8)|�$�8,

and property (iii) from writing

|aj&aj+1 |=|#($Q j�8)&#($Q j+1�8)|�$Q j (Q&1)�8=J $Q j�64.

Property (iv) follows from the definition of John domain, and property (v)
from the estimate

|aj |�|aj&y|+| y|=|#($Q j�8)&#(0)|+| y|�
$Q j

8
+R, for 0� j�Z

and property (i). Property (vi) follows from noting that

dist(aZ , K )=dist(#($QZ�8), K )�
J$QZ

8
�

J$QZ

16
+2R.

(b) For each point y # K3$ & 0$ there is a point zy # 0 such that
|zy&y|<2 $. By the John property, there is a point y~ # 0 such that

dist( y~ , K )�4$

and

| y~ &zy |�4 $�J,

so the point y~ satisfies both (4) and (5). Using the compactness of
K3$ & 0$, we can arrange that each of the maps y � zy and y � y~ assumes
only finitely many values, and the inverse image of each value is a Borel
set.

We recall that a distribution E on RN is called a fundamental solution for
L(D) if L(D) E is equal to the unit measure supported at the origin. The
following lemma establishes the existence of fundamental solutions for the
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operators considered in this paper ([J, Chapter 3], [H, Chapter 7]). We
let Pl denote the space of polynomials in N real variables, with complex
coefficients, which are homogeneous of degree l.

Lemma 2. There exists a fundamental solution for L(D) which is a
locally integrable function on RN of the form E(x)#E1(x)+E2(x) log |x|,
where the restriction of E1 to RN "[0] is real-analytic and homogeneous of
degree m&N, and

E2=0 if m<N or N is odd;

E2 # Pm&N if m�N and N is even.

We now summarize some well-known facts concerning the fundamental
solution E; we refer to [BL] for further discussion and references. If
x # RN"[0] is fixed, the function y � E(x&y) is real-analytic on RN"[0];
we may write the Taylor series expansion in y about 0,

E(x&y)= :
�

l=0

Q (x)
l ( y), (6)

where

Q(x)
l ( y)=(&1) l :

|:|=l

D:E(x)
: !

y:. (7)

This expansion is valid or y in some neighborhood of the origin in RN. It
follows that for fixed x # R N"[0], each polynomial Q (x)

l satisfies

L(D) Q (x)
l #0 on RN.

Lemma 3. There is a constant A>1 with he following property. If n is
a nonnegative integer satisfying n�m&N, and + is a complex measure on
B� r satisfying

| P d+=0 for all P # Ln ,

then

|E V +(x)|�\ |x|
r +

m&N

\Ar
|x|+

n+1

sup
Ar, 2r

|E V +| for |x|�Ar.

Lemma 3 follows from [BL, Theorem 4.1, Theorem 4.2, Remark 4.3, and
Theorem 5.2]. For the rest of this paper we let A denote the constant of
Lemma 3.
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Lemma 4. For each multi-index : there is a constant C(:)>0 with the
following property. If f satisfies L(D) f =0 on an open ball B\(a), where
a # RN and \>0, then

|D:f (a)|�
C(:)
\ |:| sup

B\(a)

| f |.

Lemma 4 follows from applying [BL, Theorem 5.3] to the function
u(x)# f (a+\x) on the unit ball B1 .

We close this section with the proof of Theorem 4, for which we need the
following result.

Lemma 5. Let 0� be a bounded domain in CN. Let G/0� & RN be a non-
empty open subset of RN, and K a compact subset of 0� . Then there exists a
constant { # (0, 1), depending only on 0� , G, and K, with the following
property. If g is a holomorphic function on 0� which satisfies | g|�M on 0� ,
and if | g|�m�M on G, then

| g|�m{M1&{ on K.

Lemma 5 follows from the two-constants lemma for plurisubharmonic
functions in [Kl, Proposition 4.5.6]; see the remarks following [BL,
Lemma 3.1]. (Actually, this argument might give Lemma 5 with the con-
stant {=1, but then Lemma 5 holds a fortiori with the constant {=1�2.)

Proof of Theorem 4. This proof should be compared with arguments in
[BL, Section 3]. For the proof we may assume that G//0. The domain
0 may be written as the union of an increasing sequence of relatively com-
pact subdomains; one of these subdomains must contain the compact set
K _ G� , and we let 0$ be a subdomain with this property.

We will use the fact that for each positive number R there exist positive
numbers r(R)<R and C(R) with the following property [ABG,
Lemma 2]; if h is any solution of L(D) h=0 on a ball BR(a)/RN, then
there is a (unique) holomorphic function h� on the complex ball B� r(R)(a)#

[z # CN : |z&a|<r(R)] which agrees with h on the real ball Br(R)(a), and
&h� &B� r(R)(a)�C(R) &h&BR(a) . Maintaining this notation, we note that each
point a # 0$ is the center of an open ball BR(a)(a)/0, and by the Heine-
Borel theorem we can find a finite set F/0$ such that

0$/ .
a # F

Br(R(a))(a).

Thus the union

0� # .
a # F

B� r(R(a))(a)
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is an open set in CN containing 0$, and 0� is connected since it can be
regarded as the union of the connected set 0$ and balls B� r(R(a))(a) which
intersect 0$.

To complete the proof of Theorem 4, it suffices to prove (3) when f is
any solution of L(D) f =0 in 0 satisfying sup0 | f |<�. From the italicized
result above we know that for each point a # F there is a holomorphic
function f� a on the complex ball B� r(R(a))(a) which agrees with f on the real
ball Br(R(a))(a). We now obtain a well-defined holomorphic function g
on 0� by requiring that g= f� a on B� r(R(a))(a); in particular, g# f on
0� & RN

#0$. Moreover, the italicized result above shows that

sup
0�

| g|�C� sup
0

| f |,

where C� =supa # F C(R(a)). We now see from Lemma 5 that there is a con-
stant { # (0, 1), depending only on L, K, and G, such that

sup
K

| f |�(sup
G

| f | ){ (sup
0�

| g| )1&{�C� 1&{(sup
G

| f | ){ (sup
0

| f | )1&{,

so Theorem 4 holds with Y=C� 1&{.

Remark. Theorem 4 is valid if L(D) is any elliptic partial differential
operator with real-analytic coefficients as we see from a similar argument
using [G, Lemma, p. 153] instead of [ABG, Lemma 2]. In addition, we
may replace the condition that G/0 be a nonempty open set by the less
restrictive hypothesis that G/RN/CN be nonpluripolar since Lemma 5
remains valid [K, Chapter 4].

3. Proof of Theorem 1

We begin with the following corollary of Theorem 4.

Lemma 6. There exist constants Y�1 and { # (0, 1) with the following
property. Let B be an open ball of radius \ in RN, and let a and a~ be points
in the ball B whose distance from the center is no more than \�4. If f is any
solution of L(D) f =0 in B, then

sup
B\�8(a~ )

| f |�Y( sup
BJ\�64(a)

| f | ){ (sup
B

| f | )1&{.

Proof. From Theorem 4 we see that there are constants Y�1 and
{ # (0, 1) such that any solution u of L(D) u=0 in B3�4 satisfies

sup
B5�8

|u|�Y(sup
BJ�64

|u| ){ (sup
B3�4

|u| )1&{. (8)
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Under the hypotheses of Lemma 6 we then have

sup
B\�8(a~ )

| f |� sup
B5\�8(a)

| f |�Y( sup
BJ\�64(a)

| f | ){ ( sup
B3\�4(a)

| f | )1&{

�Y( sup
BJ\�64(a)

| f | ){ (sup
B

| f | )1&{.

Here the first inequality follows from the inclusion B\�8(a~ )/B5\�8(a); and
the second and third inequalities follow from noting that B3\4(a)/B and
applying (8) to the function u(x)# f (a+\x). This proves Lemma 6.

Lemma 7. Let K be a nonempty compact subset of RN whose comple-
ment is a John domain with John constant J, and let r be the smallest positive
number such that K1/Br . Then there are constants b>1, q>0, and C>0,
each depending only on K and L, with the following property. If n is a non-
negative integer satisfying n�m&N, + is a complex measure on K satisfying

| P d+=0 for all P # Ln ,

and 0<$<1, then

sup
B2Ar"K$

|E V +|�
C

bn $q sup
B16Ar�J "KJ $�16

|E V +|. (9)

Proof. We define u=E V +, and let $ # (0, 1) be fixed. Without loss of
generality, we will prove (9) under the additional assumption that

sup
B16Ar�J "KJ $�16

|u|=1. (10)

Since J $�16<1, it then follows from Lemma 3 that

|u(x)|�\ |x|
r +

m&N

\Ar
|x|+

n+1

for |x|�Ar. (11)

For the rest of the proof of Lemma 7, we fix a point y # B2Ar "K$ , and we
will prove that |E V +( y)| is bounded by the right side of (9). We let
a0 , a1 , ..., aZ be a sequence of points associated with the point y and the
radius R=2Ar in Lemma 1(a). Then the ball BJ$QZ�128(aZ) is contained in
AR, 8R�J , and in particular we may apply (11) to all points x in this ball; we
conclude that

sup
x # BJ$QZ�128(aZ)

|u(x)|�
rN&m

2n+1 sup
x # BJ$QZ�128(aZ)

( |x| m&N)

�
rN&m

2n+1 sup
x # AR, 8R�J

( |x|m&N)#
C1

2n . (12)
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Here the symbol # indicates that we are defining the constant C1=
rN&m2&1 supx # AR, 8R�J

( |x|m&N). We want to use estimate (12), in conjunc-
tion with repeated applications of Lemma 6, to estimate |u( y)|.

From Lemma 1(a) we may verify that the balls Bj#BJ$Q j�16(aj),
j=0, ..., Z&1 are all contained in the set B8R�J "KJ$�16 , and hence from
(10) we have supBj |u|�1. Applying Lemma 6 to the ball BZ&1 gives

sup
BJ$QZ&1�128(aZ&1)

|u|�Y( sup
BJ$QZ�128(aZ)

|u| ){�Y \C1

2n+
{

. (13)

Here the second inequality follows from (12). Next, we have

sup
BJ$QZ&2�128(aZ&2)

|u|�Y( sup
BJ$QZ&1�128(aZ&1)

|u| ){�Y1+{ \C1

2n+
{2

where the first inequality follows from applying Lemma 6 to the ball BZ&2 ,
and the second inequality follows from (13). Continuing inductively, we
conclude that

sup
BJ$Q0�128(a0)

|u|�Y1+{+ } } } +{Z&1 \C1

2n+
{Z

�Y1�1&{ max[1, C1]
2n{Z .

Finally we note that the ball B$�2( y) is contained in the set B8R�J "KJ$�16 ,
and in particular |u|�1 on this ball; from this and property (ii) of
Lemma 1(a) we see that we may apply Lemma 6 to this ball to obtain the
estimate

|u( y)|�Y( sup
BJ$�128(a0)

|u| ){�Y1�1&{ (max[1, C1]){

2n{Z+1 .

Now using property (i) in Lemma 1(a) gives Lemma 7.
We now give the proof of Theorem 1, which is a refinement of the proof

of the Bernstein theorem in [BL, Section 3]. We let r be the smallest
positive number such that K1 /Br . We let , # C �

0 (B1)/C �
0 (RN) be a

fixed nonnegative function with � ,(x) dx=1, and for each \>0 we let

,\(x)#
1

\N , \x
\+ .

If we define

Nl=sup[ |D:,(x)| : x # RN, |:|=l ],

for each nonnegative integer l, then

|D:,\(x)|�
N |:|

\N+|:| . (14)
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Now let $ # (0, 1). We define

�=/K3$�4 V ,$�8 ,

where /K3$�4 denotes the characteristic function of the set K3$�4 , and we note
that the function � # C �

0 (K7$�8) is identically equal to one on K5$�8 . Using
(14) we see that

|D:�(x)|�N |:| \8
$+

N+|:|

. (15)

For each fixed nonnegative integer n�m&N, we may apply the
Hahn�Banach theorem and the Riesz representation theorem to see that
there is a complex Borel measure +=+n of total variation one supported
on K such that

| P d+=0 for all P # Ln ,

and

dn=dn( f, K)=| f d+.

We may regard F#�f # C �
0 (K$)/C �

0 (RN), and then

dn=|
K

F d+=(&1)m |
K$"K$�2

(E V +)(x) L(D) F(x) dx. (16)

(See [BL, Section 3].) We wish to estimate the functions appearing in the
last integrand in (16).

From Lemma 7 we see that there are constants b>1, q>0, C>0 such
that

sup
K$"K$�2

|E V +|�
C

bn$q sup
B16Ar�J "KJ$�32

|E V +|. (17)

Now from the form of the fundamental solution E given in Lemma 2, and
the fact that � |d+|�1, we see that there is a constant C� >0 such that

sup
B16Ar�J "KJ$�32

|E V +|�sup[ |E(x&y)| : x # B16Ar�J "KJ$�32 , y # K]

C� if m>N
�{C� (1+|log $| ) if m=N (18)

C� $m&N if m<N.
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Finally, there are complex constants c:; , depending only on L, such that

L(D) F(x)=L(D)(�f )(x)= :
|:+;|=m

c:;(D:�(x))(D;f (x)). (19)

It is clear that supp L(D) F/K7$�8"K5$�8 , so each point x # supp L(D) F is
the center of an open ball B$�8(x) in K$ ; we then conclude from Lemma 4
that

|D;f (x)|�
M
$ |;| sup

B$�8(x)

| f |�
M
$ |;| sup

K$

| f |

for x # supp L(D) F and |;|�m, (20)

where M=max[8|#|C(#) : |#|�m], and C(#) indicates the constant in
Lemma 4.

Theorem 1 now follows from substituting equation (19) into equation
(16), and then using the estimates in (15), (17), (18), and (20).

4. Proof of Theorem 2

For the rest of the paper, we let f be a nonconstant continuous function
on RN with compact support which satisfies L(D) f =0 on the interior of
K. The letter k will often be used to denote any constant which can depend
only on K, L and N. For $>0, we take the convolution

g(x)#( f V ,$)(x) (21)

with ,$ as in Section 3, and we make the following three observations.

(i) &g& f &RN�|($);

(ii) &L(D) g&RN�k|($) $&m;

(iii) L(D) g=0 outside 0$ .

Here (i) follows from (21); (ii) follows from noting that for each x0 # RN we
have

[L(D) g](x0)=[ f V L(D) ,$](x0)=[( f & f (x0)) V L(D) ,$](x0),

and using (14); and (iii) follows from the fact that L(D) f =0 on the
interior of K.

We have

g(x)=|
0$

E(x&y) L(D) g( y) dy
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for all x. Our next step is to modify g to get a function u # C�(RN)
satisfying

(a) &u&g&K3$�k|($);

(b) &u&K3$�k|($)+& f &RN ;

(c) L(D) u=0 on the neighborhood K3$ of K.

Then we will be ready to apply the Theorem 1 to u. We need to
approximate the fundamental solution, E(x&y)=E((x&y~ )&( y&y~ )).

Definition. For fixed y # K3$ & 0$ we define

�y(x)= :
m

l=0

Q (x&y~ )
l ( y&y~ ),

where y~ # 0 is chosen as in Lemma 1(b).

From the definition of Q in (7) we see that L(D) �y=0 on RN"[ y~ ]. In
particular, from (4), L(D) �y=0 on K3$ . Therefore, the function

u(x)#|
0$"K3$

E(x&y) L(D) g( y) dy+|
0$ & K3$

�y(x) L(D) g( y) dy

satisfies (c).
To verify (a), note that

u(x)&g(x)=|
0$ & K3$

L(D) g( y)[E(x&y)&�y(x)] dy.

For each y # 0$ & K3$ , we need to estimate |E(x&y)&�y(x)| for x # K3$

away from y and we also need to bound the integrals of |E(x&y)| and
|�y(x)| when x is near y. The quantitative estimates we need are in
Lemma 9; we first recall the following result from [BL].

Lemma 8 ([BL, Lemma 2.2 and Corollary 2.3]). There exists a con-
stant M0>1 with the following property. If : is a multiindex, and we assume
that |:|>m&N in case N is even, then

|D:E(x)|�: ! M |:|
0 |x| m&N&|:|, x # RN"[0].

In particular, if l is a nonnegative integer and we assume that l>m&N in
case N is even,

|Q (x)
l ( y)|�|x|m&N&l (M0 | y| ) l :

|:|=l

1 if x # RN"[0] and y # RN.

Furthermore, if |x|>M0 | y|, then (6) holds.
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Lemma 9. Assume that m<N or N is odd. There exist positive constants
c1 , c2 , c3 depending only on K and L such that for any $ # (0, 1) and any
y # 0$ & K3$ ,

|�y(x)|�c1 |x&y~ |m&N for x # K3$ , (22)

|E(x&y)&�y(x)|�
c2 $m+1

|x&y| N+1 for |x&y|�c3 $. (23)

Equation (23) remains valid if m�N and N is even.

Proof. If x # K3$ , then we see from (4) that |x&y~ |�$; using this fact,
(5), and Lemma 8, we obtain (22).

We will now prove (23) for any c3>0 satisfying

c3>c(2M0+1)>c

where c is the constant in (5). Then

2M0c
(1&(c�c3)) c3

<1. (24)

Fix x with |x&y|�c3 $. Thus $�|x&y|�c3 and, from (5),

| y&y~ |<c$�
c
c3

|x&y|.

Hence

|x&y~ |�|x&y|&| y&y~ |�\1&
c
c3+ |x&y|. (25)

From (24) and (25) it follows that |x&y~ |>2M0 | y&y~ |, so that by
Lemma 8 we have

E(x&y)=E((x&y~ )&( y&y~ ))= :
�

l=0

Q (x&y~ )
l ( y&y~ )

for |x&y|�c3 $. Applying the estimate in Lemma 8 for l>m>m&N, and
using (5) and (25), we obtain

|E(x&y)&�y(x)|= } :
�

l=m+1

Q (x&y~ )
l ( y&y~ )}

� :
�

l=m+1

(M0 c$) l

[(1&(c�c3)) |x&y|]l&m+N :
|:|=l

1.
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Since |x&y|�c3 $, by (24) it follows that M0 c$�((1&(c�c3)) |x&y| )<1�2.
Thus (23) follows from the elementary estimate

:
�

l=m+1

rl :
|:| =l

1�rm+12m+1 :
|:|�0

( 1
2) |:|=rm+12N+m+1, 0<r<1�2.

This completes the proof of Lemma 9.

Recall that

g(x)=|
0$

E(x&y) L(D) g( y) dy

and

u(x)#|
0$"K3$

E(x&y) L(D) g( y) dy+|
0$ & K3$

�y(x) L(D) g( y) dy

where �y are the functions from Lemma 9.
We want to estimate &u&g&K3$ . Fix x # K3$ . Then

|u(x)&g(x)|�|
0$ & K3$

|L(D) g( y)| |E(x&y)&�y(x)| dy=I1+I2

where

I1#|
[ |x&y|�c3 $] & 0$ & K3$

|L(D) g( y)| |E(x&y)&�y(x)| dy (26)

I2#|
[ |x&y|>c3 $] & 0$ & K3$

|L(D) g( y)| |E(x&y)&�y(x)| dy. (27)

We first estimate I2 . Since the integration takes place over
[ y : |x&y|>c3 $], by (23) and (ii) follows that

I2�
k|($)

$m |
[ |x&y|>c3 $]

c2 $m+1 1
|x&y| N+1 dy=

k|($)
$m c2 $m+1 1

c3 $

which proves that I2�k|($).
To estimate I1 , first assume m<N or N is odd and use the estimate (ii)

to obtain

I1�
k|($)

$m _|Bc3 $(x)
|E(x&y)| dy+|

Bc3 $(x) & K3$

|�y(x)| dy&
�

k|($)
$m _|[ |z|<c3 $]

|E(z)| dz+k$m&�k|($),
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where the second inequality follows from (22), the inequality

$�|x&y~ |�(c3+c) $, x # K3$ , (28)

and the form of the fundamental solution if m<N or N is odd. This gives
(a) if m<N or N is odd.

To estimate I1 when m=N and N is even, note that Q (x&y~ )
0 ( y&y~ )=

E(x&y~ ) and hence

|E(x&y)&�y(x)|= }E(x&y)&E(x&y~ )& :
m

l=1

Q (x&y~ )
l ( y&y~ )}.

We now estimate

I3#|
Bc3 $(x) & 0$ & K3$

|E(x&y)&E(x&y~ )| dy

and

I4#|
Bc3 $(x)

:
m

l=1

|Q (x&y~ )
l ( y&y~ )| dy.

For the latter integral, since l>0=m&N, from Lemma 8 we obtain

|Q (x&y~ )
l ( y&y~ )|�\cM0

c3 +
l

:
|:|=l

1,

so that I4�k $m since vol(Bc3 $(x))=k $N. For the estimate on I3 we write
E(x)=E1(x)+E2 log |x| where E2 is a constant and E1 is homogeneous of
degree 0 away from the origin. Thus

|
Bc3 $(x)

|E1(x&y)&E1(x&y~ )| dy�k$N=k$m.

To estimate

|
Bc3 $(x) & 0$ & K3$ } log

|x&y|
|x&y~ | } dy,

from (28) we have

|x&y|
(c+c3) $

�
|x&y|
|x&y~ |

�
|x&y|

$

84 BAGBY, BOS, AND LEVENBERG



File: 640J 292317 . By:CV . Date:06:02:00 . Time:16:06 LOP8M. V8.0. Page 01:01
Codes: 2036 Signs: 904 . Length: 45 pic 0 pts, 190 mm

for y # Bc3 $(x) & 0$ & K3$ . Thus

} log
|x&y|
|x&y~ | }� } log

|x&y|
$ }+ } log

|x&y|
(c+c3) $ } .

An elementary computation shows that

|
c3 $

0 } log \ r
c$+} rN&1 dr�k$N.

It follows that I3�k $m and hence

|
Bc3 $(x) & 0$ & K3$

|E(x&y)&�y(x)| dy�k$m

from which it follows that I1�k|($). This yields (a) when m=N and N
is even.

We then obtain (b) using (a) and the triangle inequality:

|u(x)|�|u(x)&g(x)|+| g(x)|�k|($)+& f &RN for x # K3$ .

We can now complete the proof of Theorem 2. Given the function f and
0<$<1, we construct the function u satisfying (a), (b), and (c). Applying
Theorem 1 to u on K$ , we obtain

dn(u, K)�C
k|($)+& f &RN

$ pbn $q

for n�m&N. From (a) and property (i) of g,

&u& f &K�&u&g&K3$+&g& f &K�k|($).

Thus

dn( f, K)�k|($)+C
k|($)+& f &RN

$ pbn$q

for n�m&N.
Since b>1, one can verify that there exist positive numbers & and =

depending only on b, p and q with the following property:

n p&

bn(1&q&)
�

1
n= for each positive integer n�m&N.
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Upon setting $=1�n& and using the fact that

|(t)�
|(1)

2
t,

valid for the modulus of continuity | of any non-constant continuous func-
tion f in RN, we complete the proof of Theorem 2.

5. Remarks

In this section, we assume that m>N and N is even and prove a version
of Theorem 2 in this setting. let |($) be a modulus of continuity, i.e.,
| is a positive, increasing function of $�0 such that |($1+$2)�
|($1)+|($2). We make the additional assumption that

|($) log
1
$

�;|($_)

for some positive constants ; and _. Define

C|(RN)#[ f continuous on RN : | f (x)& f ( y)|�|( |x&y| )

for all x, y # RN].

As an example, this hypothesis is satisfied when |($)=$# for some
# # (0, 1], which yields the classical space of functions satisfying a
Ho� lder�Lipschitz condition of order #. Let K be a compact set in RN whose
complement is a John domain. Then we have the following elliptic Jackson
theorem: there are constants C1 , C2>0, depending only on |, K and L such
that for any f # C|(RN) with compact support satisfying L(D) f=0 on the
interior of K, and for any positive integer n�m&N, (2) holds.

Recall that E(x)=E1(x)+E2(x) log |x| in this setting. Since (23)
remains valid if m�N and N is even, the estimate on I2 (equation (27)) is
satisfied. Thus the only modification in the proof occurs in estimating I1

(equation (26)). By modifying Lemma 8 to take into account logarithmic
terms, we can prove: if m>N and N is even, there exists c1 depending only
on K and L such that for any $ # (0, 1) and any y # 0$ & K3$ ,

|�y(x)|�c1(1+|log |x&y~ | | ) for x # K3$ (22')

and hence, using (28),

I1�
k|($)

$m _|[ |z|<c3 $]
|E(z)| dz+k(1+|log $| ) $m&N vol(Bc3 $(x))& .
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Using the homogeneity of E1 and E2 , an elementary computation shows
that

|
[ |z|<c3 $]

|E(z)| dz�|
[ |z|<c3 $]

|E1(z)| dz+|
[ |z|<c3 $]

|E2(z)| |log |z| | dz

�k $m _1+log
1
$& .

Hence I1�k|($) log (1�$)�;k|($_); thus u satisfies

(a') &u&g&K3 $�;k|($_)

and the rest of the proof proceeds as before.
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